Kapustina M, Zhang AA, Tsai JY, Bristow BN, Kraus L, Sullivan KE, Erwin SR, Wang L, Stach TR, Clements J, Lemire AL, Cembrowski MS
Cell Reports. 2024 Feb 29;43(3):113842. doi: 10.1016/j.celrep.2024.113842
+ Expand Abstract
Understanding the cell-type composition and spatial organization of brain regions is crucial for interpreting brain computation and function. In the thalamus, the anterior thalamic nuclei (ATN) are involved in a wide variety of functions, yet the cell-type composition of the ATN remains unmapped at a single-cell and spatial resolution. Combining single-cell RNA sequencing, spatial transcriptomics, and multiplexed fluorescent in situ hybridization, we identify three discrete excitatory cell-type clusters that correspond to the known nuclei of the ATN and uncover marker genes, molecular pathways, and putative functions of these cell types. We further illustrate graded spatial variation along the dorsomedial-ventrolateral axis for all individual nuclei of the ATN and additionally demonstrate that the anteroventral nucleus exhibits spatially covarying protein products and long-range inputs. Collectively, our study reveals discrete and continuous cell-type organizational principles of the ATN, which will help to guide and interpret experiments on ATN computation and function.
The zebrafish is an important model in systems neuroscience but viral tools to dissect the structure and function of neuronal circuitry are not established. We developed methods for efficient gene transfer and retrograde tracing in adult and larval zebrafish by herpes simplex viruses (HSV1). HSV1 was combined with the Gal4/UAS system to target cell types with high spatial, temporal, and molecular specificity. We also established methods for efficient transneuronal tracing by modified rabies viruses in zebrafish. We demonstrate that HSV1 and rabies viruses can be used to visualize and manipulate genetically or anatomically identified neurons within and across different brain areas of adult and larval zebrafish. An expandable library of viruses is provided to express fluorescent proteins, calcium indicators, optogenetic probes, toxins and other molecular tools. This toolbox creates new opportunities to interrogate neuronal circuits in zebrafish through combinations of genetic and viral approaches.
In this issue of Neuron, Gurnani and Silver (2021) report that activity across Golgi cells, a major type of inhibitory interneuron in the cerebellar cortex, is multidimensional and modulated by behavior. These results suggest multiple functions for inhibition in cerebellar computations.
Summary Commissural inhibitory neurons in the spinal cord of aquatic vertebrates coordinate left-right body alternation during swimming. Their developmental origin, however, has been elusive. We investigate this by comparing the anatomy and function of two commissural inhibitory neuron types, dI6dmrt3a and V0d, derived from the pd6 and p0 progenitor domains, respectively. We find that both of these commissural neuron types have monosynaptic, inhibitory connections to neuronal populations active during fictive swimming, supporting their role in providing inhibition to the contralateral side. V0d neurons tend to fire during faster and stronger movements, while dI6dmrt3a neurons tend to fire more consistently during normal fictive swimming. Ablation of dI6dmrt3a neurons leads to an impairment of left-right alternating activity through abnormal co-activation of ventral root neurons on both sides of the spinal cord. Our results suggest that dI6dmrt3a and V0d commissural inhibitory neurons synergistically provide inhibition to the opposite side across different swimming behaviors.
Intelligent behavior involves associations between high-dimensional sensory representations and behaviorally relevant qualities such as valence. Learning of associations involves plasticity of excitatory connectivity, but it remains poorly understood how information flow is reorganized in networks and how inhibition contributes to this process. We trained adult zebrafish in an appetitive odor discrimination task and analyzed odor representations in a specific compartment of the posterior zone of the dorsal telencephalon (Dp), the homolog of mammalian olfactory cortex. Associative conditioning enhanced responses with a preference for the positively conditioned odor. Moreover, conditioning systematically remapped odor representations along an axis in coding space that represented attractiveness (valence). Interindividual variations in this mapping predicted variations in behavioral odor preference. Photoinhibition of interneurons resulted in specific modifications of odor representations that mirrored effects of conditioning and reduced experience-dependent, interindividual variations in odor-valence mapping. These results reveal an individualized odor-to-valence map that is shaped by inhibition and reorganized during learning.
The developing nervous system consists of a variety of cell types. Transgenic animals expressing reporter genes in specific classes of neuronal cells are powerful tools for the study of neuronal network formation. We generated a wide variety of transgenic zebrafish that expressed reporter genes in specific classes of neurons or neuronal progenitors. These include lines in which neurons of specific neurotransmitter phenotypes expressed fluorescent proteins or Gal4, and lines in which specific subsets of the dorsal progenitor domain in the spinal cord expressed fluorescent proteins. Using these, we examined domain organization in the developing dorsal spinal cord, and found that there are six progenitor domains in zebrafish, which is similar to the domain organization in mice. We also systematically characterized neurotransmitter properties of the neurons that are produced from each domain. Given that reporter gene expressions occurs in a wide area of the nervous system in the lines generated, these transgenic fish should serve as powerful tools for the investigation of not only the neurons in the dorsal spinal cord but also neuronal structures and functions in many other regions of the nervous system.
Current Biology. 05/2013;23:843-849. doi: https://doi.org/10.1016/j.cub.2013.03.066
+ Expand Abstract
During locomotion in vertebrates, reticulospinal neurons in the hindbrain play critical roles in providing descending excitation to the spinal cord locomotor systems. However, despite the fact that many genes that are used to classify the neuronal identities of neurons in the hindbrain have been identified, the molecular identity of the reticulospinal neurons that are critically involved in locomotor drive is not well understood. Chx10-expressing neurons (V2a neurons) are ipsilaterally projecting glutamatergic neurons in the spinal cord and the hindbrain. Many of the V2a neurons in the hindbrain are known to project to the spinal cord in zebrafish, making hindbrain V2a neurons a prime candidate in descending locomotor drive. Results We investigated the roles of hindbrain V2a neurons using optogenetic and electrophysiological approaches. The forced activation of hindbrain V2a neurons using channelrhodopsin efficiently evoked swimming, whereas the forced inactivation of them using Archearhodopsin3 or Halorhodpsin reliably stopped ongoing swimming. Electrophysiological recordings of two populations of hindbrain reticulospinal V2a neurons showed that they were active during swimming. One population of neurons, small V2a neurons in the caudal hindbrain, fired with low rhythmicity, whereas the other population of neurons, large reticulospinal V2a neurons, called MiV1 neurons, fired more rhythmically. Conclusions These results indicated that hindbrain reticulospinal V2a neurons play critical roles in providing excitation to the spinal locomotor circuits during swimming by providing both tonic and phasic inputs to the circuits.
Journal of Neuroscience. 02/2012;32:1771¨C1783. doi: 10.1523/JNEUROSCI.5500-11.2012
+ Expand Abstract
The developing spinal cord is subdivided into distinct progenitor domains, each of which gives rise to different types of neurons. However, the developmental mechanisms responsible for generating neuronal diversity within a domain are not well understood. Here, we have studied zebrafish V0 neurons, those that derive from the p0 progenitor domain, to address this question. We find that all V0 neurons have commissural axons, but they can be divided into excitatory and inhibitory classes. V0 excitatory neurons (V0-e) can be further categorized into three groups based on their axonal trajectories; V0-eA (ascending), V0-eB (bifurcating), and V0-eD (descending) neurons. By using time-lapse imaging of p0 progenitors and their progeny, we show that inhibitory and excitatory neurons are produced from different progenitors. We also demonstrate that V0-eA neurons are produced from distinct progenitors, while V0-eB and V0-eD neurons are produced from common progenitors. We then use birth-date analysis to reveal that V0-eA, V0-eB, and V0-eD neurons arise in this order. By perturbing Notch signaling and accelerating neuronal differentiation, we predictably alter the generation of early born V0-e neurons at the expense of later born ones. These results suggest that multiple types of V0 neurons are produced by two distinct mechanisms; from heterogeneous p0 progenitors and from the same p0 progenitor, but in a time-dependent manner.
Background: Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans.
Results: In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells.
Conclusions: We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.
Bilateral symmetric tissues must interpret axial references to maintain their global architecture during growth or repair. The regeneration of hair cells in the zebrafish lateral line, for example, forms a vertical midline that bisects the neuromast epithelium into perfect mirror-symmetric plane-polarized halves. Each half contains hair cells of identical planar orientation but opposite to that of the confronting half. The establishment of bilateral symmetry in this organ is poorly understood. Here, we show that hair-cell regeneration is strongly directional along an axis perpendicular to that of epithelial planar polarity. We demonstrate compartmentalized Notch signaling in neuromasts, and show that directional regeneration depends on the development of hair-cell progenitors in polar compartments that have low Notch activity. High-resolution live cell tracking reveals a novel process of planar cell inversions whereby sibling hair cells invert positions immediately after progenitor cytokinesis, demonstrating that oriented progenitor divisions are dispensable for bilateral symmetry. Notwithstanding the invariably directional regeneration, the planar polarization of the epithelium eventually propagates symmetrically because mature hair cells move away from the midline towards the periphery of the neuromast. We conclude that a strongly anisotropic regeneration process that relies on the dynamic stabilization of progenitor identity in permissive polar compartments sustains bilateral symmetry in the lateral line.
The road wound among the fields where the rice was growing luxuriantly, and where now and then they found beans and millet, and other[Pg 165] products of Japanese agriculture. The cultivation was evidently of the most careful character, as the fields were cut here and there with little channels for irrigation; and there were frequent deposits of fertilizing materials, whose character was apparent to the nose before it was to the eye. In some places, where the laborers were stooping to weed the plants, there was little more of them visible than their broad sun-hats; and it did not require a great stretch of the imagination to believe they were a new kind of mushroom from Brobdingnagian gardens. Hills like sharply rounded cones rose from each side of the narrow valley they were descending; and the dense growth of wood with which the most of them were covered made a marked contrast to the thoroughly cleared fields. The boys saw over, and over, and over again the pictures they had often seen on Japanese fans and boxes and wondered if they were realities. They had already learned that the apparently impossible pictures we find in Japanese art are not only possible, but actual; but they had not yet seen so thorough a confirmation of it as on this day's ride. "It wants some time of two o'clock yet," he said. "My friend, Dr. Bruce, does not go to bed early, so I shall go round and look him up. We'll go into the other letters carefully when we have time, Prout, but for the present I should like to borrow this one if you have no objection. What do you say?" "We have plenty of them; but many of us fall by the treacherous shooting of the civilians; they are swine, swine! And these Belgian women ... they are the dirtiest bitches ... beastly swine...." But he did not take any notice of all my exhortations and was entirely impervious to them in his grief. So I went to the station side by side with the weeping man, and surrounded by the six soldiers. The crackle of the flames, the sound of collapsing houses seemed more terrifying in the night than in day-time, and now and again I got a shock when suddenly, by the uncertain light of the flames, I saw the corpse of a civilian lying in the dark shade of the tall trees on the Boulevard. V. When we left he was in a coppersmith's shop, singing with wide open, staring eyes; his face had a strangely sad expression while he sang a gay, jigging tune to foolish words that made the people laugh. In Mme. Tallien we have a woman exactly opposite to the other two in character, principles, and conduct. Differing from both of them in birth and circumstances¡ªfor she was the daughter of a Spanish banker of large fortune¡ªwith extraordinary beauty, the hot, passionate blood of the south, a nature, habits, and principles undisciplined by authority and unrestrained by religion, she was early imbued with the creed of the revolutionists, and carried their theories of atheism and licence to the logical consequences. The helmsman had switched on its searchlight. ¡°Thank you, sir. Well, if that was true¡ªand if it wasn¡¯t¡ªwhy is the ghost walking again in the very hangar that the seaplane wreckage is in?¡± 275 "Have you bit it off, or did some girl, that you bolted off in such a hurry to see, drain you so dry o' talk that you haint got a word left? Who is she? What does she look like? What made you in sich a dreadful hurry to see her? You didn't go clear up to Bad Ax, did you, and kill that old widower?" HoMEÅ·ÃÀÒ»¼¶È˰®°®
ENTER NUMBET 0018qlpe8.com.cn www.worldipfs.com.cn www.dianhon.com.cn expsy.com.cn stmbox.com.cn www.zxwx.net.cn pevz.com.cn www.kamr.com.cn smzbw.com.cn www.fzpf168.com.cn